手机版
老树发新枝——黎曼猜想研究的新进展?
- 卢昌海 -
最近一段时间, 在黎曼猜想的研究中, 时常爆出新闻。 这在一定程度上是拜这一猜想的崇高地位所赐。 黎曼猜想是德国数学家黎曼 (Bernhard Riemann) 于 1859 年在研究素数分布时提出的, 迄今已有 160 年, 却仍未被解决。 当然, 单以时间而论, 160 年未被解决在数学猜想大家庭里尚排不到老大, 比如哥德巴赫猜想早在 1742 年就被提出了, 迄今已有 277 年, 却也依然未被解决。 但是, 若以重要性而论, 黎曼猜想在数学猜想大家庭里的地位却是无可比拟的。 据统计, 在今天的数学文献里已有一千条以上的数学命题是以黎曼猜想 (或其推广形式) 的成立为前提的, 这种与数学其他部分的千丝万缕的联系构成了黎曼猜想的重要性之 “实”。 与这种实实在在的重要性遥相呼应的, 是 1900 年希尔伯特提出的 “数学问题” 及 2000 年美国克雷数学研究所 (Clay Mathematics Institute) 悬赏百万美元的 “千禧年问题” 都纳入了黎曼猜想——前者成就了黎曼猜想的显赫之 “名”, 后者为黎曼猜想添加了巨额之 “利”。 虽然数学被公认为抽象领域, 常为公众所漠视, 但这种 “实”、 “名”、 “利” 三位一体的重要性使黎曼猜想成为了数学领域里吸引公众眼球的少数例外。 那么, 什么是黎曼猜想呢? 用最简单的话说, 黎曼猜想是关于黎曼 ζ 函数零点分布的猜想。 稍稍细述一下的话, 那么黎曼 ζ 函数顾名思义, 是一个函数, 它跟许多其它函数一样, 在某些点上取值为零, 那些点被称为黎曼 ζ 函数的零点, 其中特别重要的一部分零点被称为黎曼 ζ 函数的非平凡零点。 黎曼猜想所 “猜” 的则是: 黎曼 ζ 函数的非平凡零点全都分布在一条被称为 “临界线” 的特殊直线上。 黎曼猜想与数学其他部分的千丝万缕的联系除构成它的重要性外, 还导致了一个特点, 那就是使黎曼猜想有很多等价命题——即与黎曼猜想要么同时成立, 要么同时不成立的命题。 这些等价命题中的一个是由匈牙利数学家波利亚 (George Pólya) 给出的。 1927 年, 波利亚证明了黎曼猜想这一关于黎曼 ζ 函数零点分布的猜想与另一类函数的零点分布具有等价性——换言之, 只要证明了那另一类函数零点分布的某些性质, 就等同于证明了黎曼猜想。 那另一类函数叫做詹森多项式 (Jensen Polynomial)——确切地说是跟黎曼 ζ 函数相联系的詹森多项式[注一]。 詹森多项式是以丹麦数学家詹森 (Johan Jensen) 对它的研究而得名的, 与黎曼猜想相等价的零点分布性质则是指詹森多项式的零点全都是实数[注二]。 由于黎曼猜想始终未被解决, 因此任何等价命题原则上都开启了一种可能的解决途径——即通过研究等价命题来解决黎曼猜想, 波利亚给出的上述等价命题也不例外。 但不幸的是, 这一等价命题在很长的时间里甚至显得比黎曼猜想本身还难对付。 这是因为詹森多项式有无穷多组——彼此间以所谓的 “度数” (degree) 相区分, 每组又各有无穷多个——彼此间以所谓的 “偏移” (shift) 相区分[注三]。 而长期以来, 数学家们只证明了其中 “度数” 最低的 3 组詹森多项式的零点全都是实数——即满足黎曼猜想的要求, 这在全部詹森多项式中所占的比例为无穷小; 相比之下, 对黎曼 ζ 函数本身, 数学家们已证明了超过 40% 的非平凡零点满足黎曼猜想的要求。 因此, 波利亚给出的上述等价命题在研究黎曼猜想时受到了长期冷落, 仿佛一株枯萎的老树。
http://www-asp.com/a/1003/show.asp?id=61
|